EVIDENCE FROM SILICATE-BEARING IRON METEORITES FOR THE NATURE OF ASTEROIDAL DIFFERENTIATION. A. Ruzicka and M. Hutson, Cascadia Meteorite Laboratory, Department of Geology, Portland State University, 1721 SW Broadway, Portland, Oregon, 97207, USA, ruzickaa@pdx.edu.

Introduction: Silicate-bearing iron meteorites (members of groups IAB, IIICD, IIE, IVA and various ungrouped irons), which contain silicates often in the form of inclusions embedded in abundant (mainly >50%) metal, provide important evidence for the differentiation of asteroidal bodies. Most researchers agree that these irons formed by impact-mixing of partly molten metal and silicate, although the nature of the heat sources (exogenic or endogenic, or both) is debatable [1-3].

Silicate types: Despite a bewildering diversity of textures and mineralogies, silicates in irons can be subdivided into just four bulk chemical types that appear to have originated in fundamentally different ways [1]. Major element compositions for representative silicates are shown in a pseudoternary olivine (Ol) - quartz (Qz) - plagioclase (Pl) liquidus diagram in Fig. 1. Type A silicates have essentially chondritic mineralogies and major-element compositions (Fig. 1) and REE abundances (~1-2 x CI chondrites). Textures range from granoblastic to igneous. Type A is characteristic of IAB irons and of "unfractionated IIE" irons including Netschaëvo and Watson, and also includes the ungrouped irons Bocaiuva and possibly NWA 176, Enon, and Puente del Zacate. Type B silicates have igneous textures and are present in "fractionated IIE" irons (e.g., Miles, Weekeroo Station, Colomera), in some IABs such as Caddo County and Udei Station as basalt-gabbro, and in the ungrouped irons Guin, Sombrerete, and Mbosi. These silicates have alkali-silicarich compositions, which in Fig. 1 project close to the ternary peritectic (R to R*) and along the olivine low-Ca pyroxene boundary. Bulk REE contents are mainly ~4-8 x CI (~10-15 x CI for Sombrerete). Type C and D silicates project close to the plagioclase – quartz and olivine - quartz joins, respectively (Fig. 1). Type C consists of glassy or fine-grained feldsparsilica inclusions in fractionated IIE irons; Type D is coarse grained and mineralogically diverse, and includes peridotite in Udei Station and pyroxene - silica in the Steinbach and São João Nepomeceno IVA stony irons.

Origin of silicate types: The properties of Type A silicates can be explained by intense metamorphism with limited amounts of silicate melting (most IAB and IIICD, Netschaëvo) or by melting with little silicate melt-solid separation (Watson, a likely impact melt [4]). Type B silicates can be modeled as equilibrium partial melts of chondrite parent bodies similar to O

and C chondrites [1, 5, 6, 7], involving higher (Miles, Mbosi) or lower amounts (Colomera, Sombrerete, Guin, IAB basalt) of silicate partial melting [1]. The origin of Type C is unclear, but could have formed by partial impact melting of Type B silicate or by partial separation of fractionally crystallizing melt from Type B silicate [1]. Type D formed by feldspar loss, as restites from equilibrium partial melting (Udei Station peridotite) [5] and as cumulates of a siliceous melt (IVA stony irons) [8]. Radiometric dating implies formation of silicate-bearing irons within ~10 Ma of CAI formation, consistent with internal heating by ²⁶Al decay, although ages were sometimes partly re-set by later impact events (summarized by [1]). The data support the idea that endogenic heating was largely responsible for producing melted and differentiated materials in silicate-bearing irons, but suggest an important role for collisional processes as well.

References: [1] Ruzicka A. (2013) *Chemie der Erde*, submitted. [2] Mittlefehldt D.W. et al. (1998) *Rev. Mineral. & Geochem.* 36, pp. 4.1-4.195. [3] Bogard D.D. et al. (2000) *MAPS* 40, 207-224. [4] Olsen E. et al. (1994) *Meteoritics* 29, 200-213. [5] Ruzicka A. and Hutson M. (2010) *GCA* 74, 394-433. [6] Ruzicka A. et al. (1999) *GCA* 63, 2123-2143. [7] Ruzicka A. et al. (2006) *MAPS* 41, 1797-1831. [8] Ruzicka A. and Hutson M. (2006) *MAPS* 41, 1959-1987.

