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INTRODUCTION

Large igneous-textured inclusions poor in metal and sulfide occur in ~4% of ordinary chondrites but are otherwise diverse, suggesting various formation mechanisms [2,3]. Recent work on the petrology
of 29 inclusions suggested that they can be subdivided into different bulk chemical groups, with no evidence that they were produced by igneous differentiation [4]. Here we expand the geochemical
database to 41 inclusions, and report on the oxygen isotope composition of 12. This represents the largest data set yet obtained for the bulk chemistry and oxygen isotope composition of these objects.
Our results suggest an important role for shock melting for many inclusions but indicate somewhat different origins and processes operated.
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e Unfr and Unfr+K inclusions mostly have O-isotopic compositic
consistent with them being impact melts of such chondrites.
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