

J. L. Claydon^{1*}, A. Ruzicka², S. A. Crowther¹, M. Y. P. Lee¹, A. Bischoff³ and J. D. Gilmour¹

¹SEAES, University of Manchester, U.K., ²Cascadia Meteorite Laboratory, Department of Geology, Portland State University, U.S.A. ³Institut für Planetologie, Universität Münster, Germany. *Present address, Dept. Earth Sciences, Natural History Museum, London, UK. Email: j.claydon@nhm.ac.uk

Aim: Determine I-Xe ages of R-chondrite material of varying metamorphic grade to test the validity of the onion shell model for the R-chondrite parent body.

Rumuruti (R) chondrites

- Oxygen isotope ratios and high oxidation state distinguish them from other meteorite groups [1, and references therein].
- Most are regolith breccias, sampling several lithologies [2].
- Contain material that experienced varying degrees of metamorphism [2]:
 - R3 (least metamorphosed) \rightarrow R6 (most metamorphosed).
- ¹²⁹I decays to ¹²⁹Xe* (half-life = 16 Myr). ¹²⁹Xe* has been detected in R-chondrites

Thermal Processing and Closure Ages

- Internal heat source (e.g. ²⁶Al) \rightarrow layered parent body.
- Interior hotter, cools slower.

Irradiation

• Samples were weighed, wrapped in aluminium foil,

loaded into quartz tubes, sealed & evacuated.

Exposed to thermal neutrons (6.42×10¹⁸ n cm⁻²).

• Irradiated at Petten reactor, Netherlands.

Refrigerator

Analyser for

Enhanced

Laser

Xenon

Metamorphic grade should correlate
Closure age (e.g. length of cooling time)

"Rubble Pile" –

- Early, layered planetesimals fragmented.
- Reassembled, as a "rubble pile" continued cooling.

[3-5] but the I-Xe system has not been investigated previously.

• Chronology not well examined: only Ar-Ar [6] and Mn-Cr [7] systems.

Table 1. Sample details

Meteorite	Sample name	Metamorphic grade	Sample type
NWA 6492	RA1	Low R3	Clast
	RA2	Mid R3	Clast
	RA3	High R3	Clast
	RA4	Mixture	Matrix
	RA5	R5-R6	Clast
	RA6	R5-R6	Clast
NWA 3364	RB1	R5	Whole-rock

Metamorphic grades of NWA 6492 were determined using optical microscopy at Cascadia Meteorite Library. with closure age, seen in ordinary chondrites [8, 9].

does not correlate with metamorphic grade [10].

Xe isotopic analyses

- Samples were laser step-heated.
- Xe isotopic analyses carried out using the **RELAX** RIMS instrument [11-13].
- Samples RA5 and RA6 released very large amounts of hydrocarbons rendering the mass spectrometer unusable for several days.

 \rightarrow RA5 and RA6 are still awaiting analyses.

 \rightarrow Data from analyses of NWA 3364 (R5) (included in the same irradiation) are reported here to allow comparison of R3 and R5 material.

Only high-temperature	Q-Xe 0.9

Figure 1. I-Xe isochron plot	
▲ RA1 (High-T)	Inc
RA1 data ARA1 (Low-T)	creas
consistent with	l n

Table	2.	l-Xe	ages	(Myr)

consistent correlation between ¹²⁸Xe* and ¹²⁹Xe, are included here.

steps that show a

Low-temperature steps (not shown) released uncorrelated ¹²⁸Xe* that can be attributed to terrestrial contamination, latestage addition of ¹²⁷I or loss of ¹²⁹Xe* from low-T sites.

Sample	(-ve ages indicate later closure)	I-Xe Age	Error
RA1 High-T	-6.8	4555.5	1.0
RA1 Low-T	-8.8	4553.4	1.6
RA2	-5.6	4556.7	2.8
RA3	-10.9	4551.4	4.5
RA4	-11.9	4550.4	2.0
RB1	-14.1	4548.2	1.8

I-Xe ages (Myr) are given relative to the I-Xe irradiation standard: enstatite from the aubrite, Shallowater, absolute (Pb-Pb) age of 4562.3 ± 0.4 Myr [15].

R3 samples show earlier closure to Xe loss than R5 sample,

consistent with the onion shell model.

Closure to Xe loss occurred at 4556 ± 1 – 4548 ± 2 Myr

~5 Myr younger than Mn-Cr ages [16] \rightarrow heterogeneity of ⁵³Mn?

C

older I-Xe ages than R5 sample.

- Matrix sample RA4 appears to record later resetting, consistent with a higher metamorphic grade.
- The oldest ages (~4556 Myr) appear to be too late to date chondrule formation:

 \rightarrow secondary processing occurred in even the most primitive samples.

correlate with metamorphism

More I-Xe analyses are needed (including R5-R6 samples of NWA 6492) before confidence can be placed on this correlation.

I-Xe ages are older than Mn-Cr ages in enstatite chondrites [17] but younger in R-chondrites.

 \rightarrow do differences between chronometers indicate *radial heterogeneity of* ⁵³*Mn* [19]?

Application of a correction factor based on proposed radial heterogeneity of ⁵³Mn in the early Solar System improved the correlation between I-Xe and Mn-Cr ages in enstatites [17].

 \rightarrow however, [20] re-examined Mn-Cr system and found homogenous Mn isotopes; attributed apparent heterogeneity to terrestrial ⁵⁴Cr/⁵²Cr ratio used in data correction.

To test this hypothesis, I-Xe and Mn-Cr analyses should be carried out on mineral separates from the same R-chondrite material.

Acknowledgements: Samples of Shallowater, Ibitira and Juvinas were provided by the Natural History Museum, London. A sample of Bunburra Rockhole was provided by the Natural History Museum, London. A sample of Bunburra Rockhole was provided by the Natural History Museum, London. A sample of Bunburra Rockhole was provided by the Natural History Museum, London. A al. (2011) 42nd LPSC #2793 (abstract). [4] Nagao K. et al. (1999) Ant. Met. R. 12, 81-93. [5] Schultz L. et al. (2006) Earth Planets Space 58, 689-694. [8] Göpel C. et al. (1994) EPSL 121, 153-171. [9] Trieloff M. et al. (2003) Nature 422, 502-506. [10] Grimm R. E. (1985) J. Geophys. Res. 90, 2022-2028. [11] Crowther S. A. et al. (2008) J. Anal. Atom. Spectrom. 23, 938-947. [12] Gilmour J. D. et al. (1994) Rev. Sci. Instrum. 65, 617-625. [14] Busemann H. et al. (2000) MAPS 35, 949-973. [15] Gilmour J. D. et al. (2009) MAPS 44, 573-579. [16] Sigiura N. and Miyazaki A. (2006) Earth Planets Space 58, 689-694. [17] Busfield A. et al. (2008) MAPS 43, 883-897. [18] Rubin A. E. and Wasson J. T. (1995) Meteoritics 30, 569 (abstract). [19] Shukolyukov A. and Lugmair G. W. (2004) GCA 68, 2875-2888. [20] Trinquier A. et al. (2008) GCA 72, 5146-5163.